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Abstract. Rain-on-snow (ROS) has the potential to generate severe floods. Thus, precisely predicting the effect of an 

approaching ROS event on runoff formation is very important. Data analyses from past ROS events have shown that a 

snowpack experiencing ROS can either release runoff immediately or delay it considerably. This delay is a result of refreeze 

of liquid water and water transport mechanisms in the snowpack. Water percolation is depending on snow grain properties 

but also on the presence of structures such as ice layers or capillary barriers. During sprinkling experiments, preferential flow 15 

was found to be a process that critically impacted the timing of snowpack runoff. However, current one-dimensional 

snowpack models are not capable of addressing this phenomenon correctly. For this study, the detailed physics-based 

snowpack model SNOWPACK is extended with a water transport scheme accounting for preferential flow. The implemented 

Richards´ Equation solver is modified using a dual-domain approach to simulate water transport under preferential flow 

conditions. To validate the presented approach, we used an extensive dataset of over 100 ROS events from several locations 20 

in the European Alps, comprising meteorological and snowpack measurements as well as snow lysimeter runoff data. The 

model was tested under a variety of initial snowpack conditions, including cold, ripe, stratified and homogeneous snow. 

Results show that the model accounting for preferential flow (PF) demonstrated an improved overall and in particular more 

balanced performance. While the improvements were small for experiments on isothermal wet snow, they were pronounced 

for experiments on cold snowpacks, where field experiments found preferential flow to be especially prevalent. 25 
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1 Introduction 

The flooding potential of Rain-on-snow (ROS) events has been reported for many severe floods in the US (Kattelmann, 

1997; Kroczynski, 2004; Leathers et al., 1998; Marks et al., 2001; McCabe et al., 2007), but also in Europe (Badoux et al., 

2013; Freudiger et al., 2014; Rössler et al., 2014; Sui and Koehler, 2001; Wever et al., 2014b) where for example up to 70% 

of peak flow events could be attributed to ROS events for Austria (Merz and Blöschl, 2003). With rising air temperature due 5 

to climate change, the frequency of ROS is likely to increase in high elevation areas (Surfleet and Tullos, 2013) as well as in 

high latitudes (Ye et al., 2008). Besides spatial heterogeneity of the snowpack and uncertainties in meteorological forcing, 

deficits in process understanding make the consequences of extreme ROS events very difficult to forecast (Badoux et al., 

2013; Rössler et al., 2014). For hydro-meteorological forecasters, it is particularly important to know a priori how much and 

when snowpack runoff is to be expected. Particularly, a correct temporal representation of snowpack processes is crucial to 10 

identify whether the presence of a snowpack will attenuate or amplify the generation of catchment-wide snowpack runoff. 

Most studies investigating ROS only consider the generation of snowpack runoff on a daily or multi-day timescale, where an 

exact description of water transport processes is less important than for sub-daily time scales (Wever et al., 2014a). Water 

transport processes are further usually described for snowmelt conditions, but not for ROS conditions, where high rain 

intensities may fall onto a cold snowpack below the freezing point. In this study however, we particularly focus on snowpack 15 

runoff generation at sub-daily scales with special attention to the timing of snowpack runoff which is influenced by 

preferential flow. 

Many studies have shown that flow fingering or preferential flow is an important water transport mechanism in both 

laboratory experiments (Hirashima et al., 2014; Katsushima et al., 2013; Waldner et al., 2004) as well as under natural 

conditions, using dye tracer (Gerdel, 1954; Marsh and Woo, 1984; Schneebeli, 1995), temperature investigations (Conway 20 

and Benedict, 1994) or by measuring the spatial variability of snowpack runoff (Kattelmann, 1989; Marsh and Pomeroy, 

1993, 1999; Marsh and Woo, 1985). The variability of snowpack runoff is defined by the distribution and size of preferential 

flow paths (PFP), which are dependent on the structure of the snowpack and weather conditions (Schneebeli, 1995). Beyond 

its importance for hydrological implications, preferential flow may also be crucial for wet snow avalanche formation 

processes, where snow stability can be depending on the exact location of liquid water ponding (Wever et al., 2016a). 25 

Most snow models describe the water flow in snow as a uniform wetting front, thereby implicitly only considering 

the matrix flow component. The history of quantitative modeling of water transport in snow starts with Colbeck (1972), who 

first described a gravity drainage water transport model for isothermal, homogeneous snow. This was done by applying the 

general theory of Darcian flow of two-fluid phases flowing through porous media, neglecting capillarity. Because water 

transport is not just occurring in isothermal conditions and snow can therefore not be treated as a classical porous medium, 30 

Illangasekare et al. (1990) were the first to introduce a 2D model being able to describe water transport in subfreezing and 

layered snow. A detailed multi-layer physics based snow model, where water transport was governed by the gravitational 

part of Richards` Equation described in Colbeck (1972) was introduced by Jordan (1991). With the implementation of the 
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full Richards` Equation described by (Wever et al., 2014a), the influence of capillary forces on the water flow was firstly 

represented in an operationally used snowpack model. 

A model accounting for liquid water transport through multiple flow paths was developed by Marsh and Woo 

(1985), but not being able to explicitly account for structures like ice layers and capillary barriers. Recently, multi-

dimensional water transport models were developed, which allow for the explicit simulation of PFP (Hirashima et al., 2014). 5 

These models are valuable for describing spatial heterogeneities and persistence of PFP, but have not yet been shown to be 

suitable for hydrological or operational purposes. In general, multi-dimensional models are limited by the fact that they are 

computationally intensive, thus not thoroughly validated for seasonal snowpacks and yet lack the description of crucial 

processes such as snow metamorphism and snow settling. 

In snowpack models which are used operationally, PFP are not yet considered. The recently introduced Richards‘ 10 

Equation solver for SNOWPACK led to a significant improvement of modelled sub-daily snowpack runoff rates. For this 

paper, we further modified the transport scheme for liquid water by implementing a dual-domain approach to represent PFP. 

This new approach is validated against snow lysimeter measurements which were recorded during both natural and artificial 

ROS events.  

The study aims to better describe snowpack runoff processes during ROS events within snowpack models that can 15 

be used for operational purposes such as avalanche warning and hydrological forecasting. This requires that the model 

results remains reliable, i.e. that improvements are not realized on the expense of a decreased model performance during 

periods without ROS, and that the model must not be too computationally expensive. This is the first study to test a water 

transport scheme accounting for preferential flow which has been implemented in a snowpack model that meets the above 

requirements. 20 

Our analysis of simulations of over 100 ROS events targets the following research questions: 

 

- Is snowpack runoff during ROS in a 1D model better reproduced with a dual domain approach to account for 

preferential flow than with traditional methods considering matrix flow only? 

- Are there certain snowpack or meteorological conditions, for which the performance specifically benefits if 25 

preferential flow is represented in the model? 

 

This paper is structured as follows: Section 2 describes the snowpack model setup, the water transport models, input 

data and the event definition. Results of the simulations are shown in Sect. 3. This includes data of sprinkling experiments of 

ROS (3.1), natural ROS events (3.2) and the validation of the model on a long-term dataset from two alpine snow 30 

measurement sites (3.3). The results will be discussed in Sect. 4, followed by the general conclusions found in Sect. 5.  
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2. Methods 

All results in this study are derived from simulations with the one-dimensional physics based snowpack model 

SNOWPACK (Bartelt and Lehning, 2002; Lehning et al., 2002a; Lehning et al., 2002b; Wever et al., 2014a) using 3 

different water transport schemes, described in Sect. 2.2. The model was applied to four experimental sites that were set up 

for this study in the vicinity of Davos (Sect. 2.3). These sites were maintained over two winter seasons between 2014 and 5 

2016 where data was recorded for several natural ROS events. At the same sites, we conducted a set of 6 sprinkling 

experiments to simulate ROS events for given rain intensities (Sect. 2.4). Furthermore, we conducted simulations for two 

extensive datasets from the European Alps: Weissfluhjoch (Switzerland, 46.83° N, 9.81° E, 2540 m MSL, WSL Institute for 

Snow and Avalanche Research SLF (2015), abbreviated as WFJ in the following) and Col de Porte (France, 45.30° N, 5.77° 

E, 1325 m MSL, Morin et al. (2012), abbreviated as CDP in the following). These datasets provide meteorological input data 10 

for running SNOWPACK as well as validation data, including snowpack runoff. Both datasets have already been used for 

simulations with SNOWPACK (Wever et al., 2014a) and provide data over more than 10 years each.  

Below, the SNOWPACK model and the different water transport models are described first, followed by the 

description of the field sites for ROS observation in the vicinity of Davos. Then, we detail the setup of the artificial 

sprinkling experiments. After summarizing the WFJ and CDP dataset, we finally present the definition of ROS events that is 15 

used in this study. Most analyses were performed in R 3.3.0 (R Development Core Team, 2016) and figures were created 

with base graphics or ggplot2 (Wickham, 2009). 

2.1 Snowpack model setup 

The setup of the SNOWPACK model is similar to the setup used for simulations in Würzer et al. (2016). For all 

simulations, snow depth was constrained to observed values, which means that the model interprets an increase in observed 20 

snow depth at the stations as snowfall (Lehning et al., 1999; Wever et al., 2015). The temperature used to determine whether 

precipitation should be considered rain (measurements from rain gauges) or snow (from the snow depth sensors) was set to 

achieve best results for reproducing measured snow height for precipitation driven simulations for the Davos field sites 

(between 0°C and 1.0°C). For WFJ and CDP, this threshold temperature was set to 1.2°C, where mixed precipitation 

occurred proportionally between 0.7°C and 1.7°C. Turbulent surface heat fluxes are simulated using a Monin–Obukhov bulk 25 

formulation with stability correction functions of Stearns and Weidner (1993), as described in Michlmayr et al. (2008). At 

the Davos field sites (Sect. 2.3) incoming longwave radiative flux is simulated using the parameterization from Unsworth 

and Monteith (1975), coupled with a clear sky emissivity following Dilley and O'brien (1998), as described in Schmucki et 

al. (2014). For the roughness length z0, a value of 0.002m was used for all simulations at the Davos field sites and WFJ, 

whereas a value of 0.015 was used for CDP. The model was initialized with a soil depth of 1.4, 2.2 and 2.14 m (for WFJ, 30 

CDP and Davos field sites, respectively) divided into layers of varying thickness. For soil, typical values for coarse material 
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were chosen to avoid ponding inside the snowpack due to soil saturation. Soil heat flux at the lower boundary is set to a 

constant value of 0.06 W m
-2

, which is an approximation of the geothermal heat flux.  

2.2 Water transport models 

The two previously existing methods for simulating vertical liquid water movement within SNOWPACK are either 

a simple so-called bucket approach (BA) (Bartelt and Lehning, 2002) or solving the Richards’ Equation (RE), a recently 5 

introduced method for SNOWPACK (Wever et al., 2014a; Wever et al., 2014b).   

The bucket approach represents liquid water dynamics by an empirically determined irreducible water content ϴr 

which defines if water stays in the corresponding layer or will be transferred to the layer below. This residual water content 

varies for each layer according to Coléou and Lesaffre (1998). The Richards’ Equation represents the movement of water 

in unsaturated porous media. Its implementation in SNOWPACK and a detailed description can be found in (Wever et al., 10 

2014a). 

The preferential flow model presented in this study is based on the RE model, but follows a dual-domain approach, 

dividing the pore space of the snowpack into a part representing matrix flow and a part representing preferential flow. For 

both domains Richards’ Equation is solved subsequently. The preferential flow model is described by (i) a function for 

determining the size of the matrix and preferential flow domain, (ii) the initiation of preferential flow (i.e., water movement 15 

from matrix flow to preferential flow) and (iii) an return flow condition from preferential flow to matrix flow.  

The area of the preferential domain (F) is as a function of grain size (Eq. 1), which has been determined by results 

of laboratory experiments presented by Katsushima et al. (2013) and field observations with dye tracer:  

109.10584.0  grF      (1) 

where rg is grain radius (mm). F is limited between 1% and 90% for reasons of numerical stability. The matrix 20 

domain is then accordingly defined as (1-F). Water is transferred from the matrix domain to the preferential domain if the 

water pressure head for a layer in the matrix domain is higher than the water entry pressure of the layer below, which can, 

according to Katsushima et al. (2013), also be expressed as a function of grain size. This condition is expected to be met if 

water is ponding on a microstructural transition (i.e. capillary barriers, ice lenses) inside the snowpack. Additionally, 

saturation was equalized between the matrix and the preferential domain, in case the saturation of the matrix domain 25 

exceeded the one in the preferential domain. To move water back into the matrix part, we apply a threshold in saturation of 

the preferential flow domain and water will flow back to the matrix domain once this threshold is exceeded. This threshold is 

used as a tuning parameter in the model. 

Refreezing of liquid water in the snowpack is crucial for modeling water transport in subfreezing snow and may 

also be important for modeling preferential flow. The presented preferential flow model has also been used to simulate ice 30 

layer formation under the presence of preferential flow by Wever et al. (2016b). Thereby, a sensitivity study on the role of 

refreeze in the preferential flow domain and the return flow condition from preferential flow to matrix flow was conducted. 
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It was found that neglecting refreeze led to the best results for reproducing ice layer formation, but did not significantly 

affect the performance in reproducing measured hourly snowpack runoff. Therefore, refreeze in the preferential domain is 

neglected in the presented study. The threshold in saturation for preferential flow (return flow condition) was determined as 

0.1. Further details on the implementation of the PF model and its performance can be found in Wever et al. (2016b). 

2.3 Davos field sites  5 

Four field sites have been installed within an elevational range of 950 to 1950 m MSL in the vicinity of Davos, 

Switzerland, with one meteorological station and 3-4 snow lysimeters each (15 in total, 0.45m diameter). The meteorological 

stations provided most data necessary for running the SNOWPACK model, missing parameters were estimated according to 

Sect. 2.1. Lysimeters were installed at ground level with an approximate spacing of 10m horizontal distance. The lysimeters 

consisted of a funnel attached to a precipitation gauge buried in the ground, which monitored snowpack runoff with a tipping 10 

bucket. To block lateral inflow at the snow-soil interface, each lysimeter was equipped with a rim of 5 cm height around the 

inlet. The multiple snow lysimeter setups allowed analyzing the spatial heterogeneity of snowpack runoff. Snowpack 

properties (SWE, LWC, HS, TS) were manually measured directly before each natural ROS event so that the initial 

conditions of the snowpack are known in detail. LWC was measured with the “Denoth meter”, a device introduced by 

Denoth (1994). The onset of runoff was defined as the time when cumulative snowpack runoff (measured and simulated, 15 

respectively) has reached 1 mm. 

2.4 Sprinkling Experiment Description 

During winter 2014/15, a total of 6 artificial sprinkling experiments were performed on all four Davos field sites 

described above to be able to investigate snowpack runoff generation for different snowpack properties. The experiments 

were conducted with a sprinkling device especially developed for sprinkling on snowpack. The device was a refined version 20 

the sprinkling device described in Juras et al. (2013). For each experiment, the device was placed above a snow lysimeter, 

covered by an undisturbed natural snowpack. The water used for sprinkling was mixed with the dye tracer Brilliant Blue 

FCF (concentration 0.4 g l
-1

) to be able to observe PFPs within the snowpack. Sprinkling was performed in 4 bursts of 30 

minutes each, interrupted by 30 minutes breaks. Sprinkling was conducted over a 2x2m plot centered above the lysimeters, 

and with an intensity of 24.7 mm h
-1

, leading to a total of 49.4 mm artificial rain in each of the experiments. The intensities 25 

were determined by calibration experiments on lysimeters not covered by snow and are valid for a certain distance between 

the nozzle and the sprinkled surface and water pressure at the nozzle. Despite the fact that this value still represents a very 

intense ROS event, it is within range of natural ROS events and similar or much lower compared to previous studies (19 mm 

h
-1

; Eiriksson et al. (2013); 48–100 mm h
-1

; Singh et al. (1997)). For the sprinkling experiments, the exact timing of rain and 

intensities are known and the snowpack runoff measured at 1 minute intervals allowed precisely analyzing the performance 30 

of model simulations. Figure 1 shows a horizontal cut of a snowpack after the sprinkling experiment and a topview of the 
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lysimeter after the snowpack was removed for cold and wet conditions, respectively. The blue color indicates where water 

transport took place and where sprinkled water was held by capillary forces or refrozen.  

2.5 Extensive dataset for in-situ validation 

Two long-term datasets from two study sites in the European Alps providing snow lysimeter data and high quality 

meteorological forcing data for running the energy balance model SNOWPACK were chosen to validate the different water 5 

transport models systematically. Datasets of both study sites used for the extensive in-situ validation are publicly available. 

The Col de Porte (CDP) site, located in the Chartreuse range in southeast France has been described in Morin et al. (2012) 

and the Weissfluhjoch site (WFJ) in the Swiss Alps has been described in Wever et al. (2015). WFJ (46.83° N, 9.81° E) is 

located at an elevation of 2540 m MSL and CDP (45.30° N, 5.77° E) is located at 1325 m MSL. CDP experiences a warmer 

climate than WFJ and as a consequence the snowpack produces snowpack runoff more often throughout the entire snow 10 

season and ROS events are more frequent than at WFJ. A multi-week snowpack builds up every winter season at CDP, but 

is, in contrast to WFJ, interrupted by complete melt in some years. The WFJ site is equipped with a 5 m
2
 snow lysimeter, 

which measures the liquid water runoff from the snowpack. It has a 60 cm rim to reduce lateral flow effects near the soil-

snow interface (Wever et al., 2014a). CDP is equipped with both a 5 m
2
 and a 1 m

2
 lysimeter. Here we use data from the 5 

m
2
 lysimeter, but include data from the 1 m

2
 lysimeter to discuss the uncertainty associated with measurements of the 15 

snowpack runoff. The studied period for WFJ is from October 1
st
 1999 to September 30

th
 2013 (14 hydrological years). 

Because of possible errors in the lysimeter data in the winter seasons of 1999/00 and 2004/05 as described in (Wever et al., 

2014a), these data were excluded from the study. For CDP the studied period is from October 1
st
 1994 to July 31

st
 2011 (17 

winter seasons) according to the data availability from the 5 m
2
 lysimeter. 

2.6 CDP+WFJ event definition 20 

As the number and characteristics of ROS events are strongly dependent on the event definition, special care needs 

to be taken to determine begin and end of a ROS event. Being interested in the temporal characteristics of snowpack runoff 

during ROS, we need to include the entire period from the onset of rain to the end of ROS induced snowpack runoff. Here 

we use an event definition according to Würzer et al. (2016) with slightly decreased thresholds to identify ROS events. 

According to this definition, a ROS event requires a minimum amount of 10 mm rainfall to fall within 24h on a snowpack 25 

with a height of at least 25 cm. While the event is defined to begin once the first 1 mm of rain has fallen, the event ends once 

there is less than 3mm of cumulative snowpack runoff recorded within the following 5h. This definition resulted in a 

selection of 61 events at CDP and 40 events at WFJ. The model simulations were subsequently evaluated over a time 

window that extends the event length by 5 and 10 hours at the beginning and end, respectively (Fig. 2). These extended 

evaluation periods allowed to also investigate a possible temporal mismatch between modelled and observed snowpack 30 

runoff. 
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3 Results 

3.1 Experimental sprinkling experiments 

During the winter period 2014/15, 6 sprinkling experiments (Ex1-Ex6) were conducted on 4 different sites to be 

able to investigate snowpack runoff generation for different snowpack properties. With distinct differences in snowpack 

properties but controlled rain intensities, these experiments were expected to reveal the influence of snow cover properties 5 

and differences between the water transport models best. For all experiments, initial snow height (HS), snowpack 

temperature (TS), and LWC profiles were measured (Table 1). According to these measurements, the snowpack conditions 

on which the sprinkling experiments were conducted can be separated into two cases: The first 3 experiments were 

conducted on dry and cold (i.e. below the freezing point) snow and will be called winter experiments. The snowpack of Ex4 

and Ex5 was isothermal and in a wet state. At the onset of Ex 6 however, the snowpack was not completely isothermal and 10 

had just little LWC. Nevertheless the snowpack already passed peak SWE and was in its ablation phase. Therefore the later 3 

experiments (Ex4-Ex6) will be referred to as spring experiments in the following. 

For all winter experiments (Fig. 3 and Fig. 4, (a,b,c)), both modeled and observed total event runoff remained below 

the amount of sprinkling water. During Ex3 no snowpack runoff was observed, because visual inspection afterwards 

revealed an impermeable ice layer covering both the lysimeter and the adjacent ground. During spring conditions, on the 15 

other hand, snowmelt lead to snowpack runoff exceeding total sprinkling input, except for measured snowpack runoff in Ex6 

(Fig. 3 and Fig. 4, (d,e,f)). 

Additionally, Fig. 4 shows, that just the PF model was capable to reproduce all 4 peaks of observed snowpack 

runoff for winter conditions (Ex1+2), even if the first peak of Ex1 was strongly underestimated. For spring conditions 

however, all 3 models managed to represent 4 peaks corresponding to the four sprinkling bursts, but the PF model showed 20 

best correspondence with observed snowpack runoff (Fig. 3 and Fig. 4 (d,e,f); Table 1). Regarding the onset of snowpack 

runoff, the PF model especially led to faster snowpack runoff for the first 2 winter experiments, where the RE and BA 

models showed delayed snowpack runoff onset. For spring conditions the faster snowpack runoff response of the PF model 

led to a slightly early snowpack runoff. Maximal snowpack runoff rates for dry and cold conditions were generally 

overestimated by all models, in case snowpack runoff was measured and snowpack runoff was simulated, whereas wetter 25 

conditions led to a minor underestimation.  

Regarding the overall correlation between measured and simulated snowpack runoff, PF outperformed the other 

models (Table 2), in particular during winter conditions. Summarizing, this initial assessment suggests that the PF approach 

has potential advantages in particular a) as to the timing of snowpack runoff and b) for cold snowpacks which are not yet 

entirely ripened. 30 
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3.2 Natural occurring ROS Events 

In January 2015, two ROS events occurred in the vicinity of Davos. They were observed over an elevational range 

of 950 to 1560 m MSL on the same sites on which also the sprinkling experiments were conducted. Figure 5 shows the 

course of cumulative rainfall and snowpack runoff for both dates and all sites. Pre-event conditions (HS, LWC, TS) were 

measured shortly before the onset of rain for both events and are shown together with coefficients of determination (R
2
) for 5 

hourly snowpack runoff of the different models Table 2.  

For the event of 03.01.2015 (Fig. 5, upper row) the lower sites Serneus and Klosters (950 and 1200 m asl) showed a 

similar snowpack runoff dynamics regarding the delayed onset and the total amount (cumulative sum averaged over the 3 

corresponding lysimeters: 20.3 mm and 21.1 mm, respectively). Also the heterogeneity between data from the individual 

lysimeters was relatively low (Range of 3.1 mm and 3.9 mm, respectively). For the highest located site (Davos), however, 10 

the snowpack runoff measured by all 4 lysimeters showed a greater variability in the delayed onset of snowpack runoff (0 to 

7 hours) and the total amount of snowpack runoff (mean 24.7 mm; range of 57.9 mm). For the lower sites (Serneus and 

Klosters), the PF and RE models generated snowpack runoff too early (PF: 2 to 3 hours; RE: 0.3 to 1.4 hours). The BA 

model generated snowpack runoff rather too late (1.3 to 2 hours), but still within range of the variability of observed 

snowpack runoff for Serneus. However, the lysimeter snowpack runoff showed good accordance with modelled PF and RE 15 

snowpack runoff, whereas the BA always led to underestimation of snowpack runoff. At the higher elevation site Davos, the 

RE model led to a better representation of mean observed snowpack runoff amount, when compared with BA and PF. The 

mean observed snowpack runoff onset however was represented best by the PF model (0.3 hours early) if being compared to 

BA (3.7 hours delay) and RE (1.2 hours delay). 

For the event of 09.01.2015 (Fig. 5, bottom row) the lower sites showed again little temporal and spatial 20 

heterogeneity in lysimeter runoff (Range of 1 mm and 2.2 mm, respectively), whereas this was more the case for Davos 

again (Range of 13.3 mm). Observed mean event snowpack runoff was more diverse for all elevations, where Klosters had 

the highest cumulative snowpack runoff (Serneus 13.3 mm; Klosters 17.7 mm; Davos 7.8 mm). If compared to observed 

total snowpack runoff, the PF model overestimated snowpack runoff for Serneus and underestimated snowpack runoff for 

Klosters, whereas the RE and especially the BA model underestimate event snowpack runoff for both sites. For Davos, all 25 

models were overestimating event snowpack runoff and led to early snowpack runoff. Except the RE model, which 

represented onset of snowpack runoff correctly for Serneus, none of the models were able to model snowpack runoff onset 

correctly for any of the sites. 

 

 30 
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3.3 Validation on an long-term dataset 

3.3.1 Modeled and observed snowpack runoff for the whole dataset 

Given the partly contradictory findings on the performance of the three model variants based on the above 

assessment for artificial ROS simulations under controlled conditions (Sect. 3.1), as well as natural ROS events (Sect. 3.2), 

further more systematic model test were needed. Therefore we validate the different models based on extensive datasets from 5 

the two sites WFJ and CDP, as described in Sect. 2.4. 

Before we focus on the specific performance of the PF model for a large number of individual ROS events, we first 

analyzed the overall model performance throughout the whole study period, i.e. over entire winter seasons. Therefore we 

analyzed observed and modeled hourly snowpack runoff provided snow heights were above 10 cm to ensure that lysimeter 

runoff was caused by snowpack runoff and not rainfall. For both sites, R
2
 values for PF were slightly higher than for RE 10 

(Table 3), which both clearly outperformed the BA. Also the root mean squared errors (RMSE) of the PF model were lower 

compared to RE and BA. We can therefore conclude that the implementation of the PF approach slightly improves water 

transport over entire winter seasons. 

 

3.3.2 ROS event characteristics of the extensive dataset 15 

Average characteristics of the individual ROS events at CDP and WFJ are summarized in Fig. 6. The temporal 

course of rain and snowpack runoff rates averaged over all events at WFJ (40 individual events) and CDP (61 individual 

events) are shown in Fig. 6 (a). ROS events at WFJ showed, on average, higher maximum rain intensities than at CDP, 

leading to higher average snowpack runoff intensities in the beginning of the events. Whereas at WFJ, ROS events tended to 

be short and intense, at CDP the event rainfall extended over a longer period of time. Interestingly, we observed relatively 20 

high initial snowpack runoff rates before the actual begin of the ROS event, especially for WFJ, which suggests that many 

ROS events at this site occurred during the snowmelt period. Averaged over all individual events, snowpack runoff reached a 

peak after 1 and 4 hours after the onset of rain for WFJ and CDP, respectively. At WFJ snowpack runoff and rain rates in the 

beginning of the events were generally higher than at CDP. The course of mean temperature during ROS events at both sites 

is shown in Fig. 6 (b). For both sites, mean air temperature (TA) dropped with the onset of rain. At WFJ, this drop was more 25 

distinct and mean TA was higher than at CDP. The mean initial ROS event snow height (HS) for WFJ was 95 cm, which is 

approximately the average snow height during mid-June (for 70 years of measurements). The mean initial HS for CDP is 67 

cm. With a SD of 42 cm, the variability of initial HS for WFJ was higher than for CDP (29 cm). 

3.3.3 Modelled and observed snowpack runoff at the event scale  

Below we investigate the performance of the three water transport schemes at the event scale. Modeled snowpack 30 

runoff was assessed against observations by the coefficient of determination (R
2
) and the root mean squared errors (RMSE). 
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To further analyze the representation of snowpack runoff timing, we defined an absolute time lag error (TLE) as the 

difference between the onsets of modelled and observed snowpack runoff in hours. The onset of snowpack runoff is defined 

as the time when cumulative snowpack runoff has reached 10% of total event-snowpack runoff.  

Figure 7 shows boxplots of R
2
 (a,d), RMSE (d,e) and absolute TLE (c,f) for all 40 ROS events at WFJ (a,b,c) and 

61 events at CDP (d,e,f), respectively. For WFJ, R
2
 values show that the BA model performance was inferior to the RE 5 

model which was in turn outperformed by the PF model. The PF also led to a reduction in RMSE by approximately 50% and 

20%, if compared to the BA and RE model, respectively. Whereas the median of TLEs for all models at WFJ was 0 and 

therefore all models reproduced the onset of snowpack runoff very well, the interquartile range decreased from BA via RE to 

the PF model. For CDP, a distinct increase in R
2
 values could be observed between BA and both RE and PF which showed a 

similar median R
2
. The interquartile range of R

2 
values was generally higher than for WFJ and increased from BA to RE, 10 

whereas it was decreasing for PF. Also the RMSEs significantly decreased with RE and PF, compared to the BA model. 

Similarly to WFJ, the median TLE for CDP was zero, except in the case of RE, where negative median TLE indicates that 

modelled snowpack runoff was on average a bit delayed compared to the observations. Nevertheless, the PF model showed 

the most consistent results, whereas the BA model showed the largest spread in TLE for individual events. The magnitude of 

TLE was generally higher for CDP than for WFJ and mostly negative, which means that the modelled snowpack runoff was 15 

delayed compared to lysimeter snowpack runoff. For BA and PF, TLE was more often positive (early modelled snowpack 

runoff), which led to a very good median for BA, but also a larger interquartile range. The PF model led to the same median 

as the RE model, but showed the smallest interquartile range. As reference we added the comparison between the 1 and 5 m
2
 

lysimeters installed at CDP (Sect. 2.5) to Fig. 7, referred to as RL. This comparison can be seen as a benchmark 

performance, as it represents the measurement uncertainty of the validation dataset. As expected, RL shows the highest 20 

overall performance measures, but while the results for both PF and RE were reasonably close to those of RL, the BA model 

performed considerably worse. 

The results shown in Fig. 7 may be influenced by both a time lag as well as the degree of reproduction of temporal 

dynamics. To separate both effects, we conducted a cross-correlation analysis, allowing a shift of up to 3 hours to find the 

best R
2
 value. Figure 8 shows both the time lag, as well as the best R

2
 value achieved. Interestingly, the BA model showed 25 

best correlations if the modeled snowpack runoff was shifted by 1 or 2 hours (consistently too early compared to 

observations). The RE model, on the other hand, showed best correlations for a shift in the other direction (consistently too 

late compared to observations). Neither was the case for PF with lags centered around 0.  

The R
2
 of the cross correlation analysis gives some indication of how well the temporal dynamics of the observed 

snowpack runoff can be reproduced, neglecting a possible time lag. The results in Fig. 8 show an improvement in R
2 
values 30 

for both sites and all models if a time lag is applied. Greatest improvements were observed for the BA model, which even 

outperformed the RE model at WFJ, albeit not for CDP. The good timing with the PF model is confirmed by almost no lag 
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for WFJ and only a small lag for CDP needed to maximize R
2
. Both RE and PF had maximized R

2 
values in range of the 

lysimeter comparison (RL). 

4 Discussion 

Even though preferential flow of liquid water through snow is a phenomenon that is known and investigated since a 

long time, it has not yet been accounted for in 1D snow models that are in use for operational applications. The results of this 5 

study show that including this process into the water transport scheme can improve the prediction of snowpack runoff 

dynamics for individual ROS events as well as for the snowpack runoff of entire snow seasons. Moreover, the representation 

of the onset of snowpack runoff is improved. This is particularly important at the catchment scale, where a delay of 

snowpack runoff relative to the start of rain may affect the catchment runoff generation, especially if the time lag varies 

across a given catchment. 10 

During the sprinkling experiments, sprinkling intensities were higher than average rain intensities during ROS but 

still within range of peak rain intensities during naturally occurring ROS events in the Swiss Alps (Rössler et al., 2014; 

Würzer et al., 2016) and the Sierra Nevada, California (Osterhuber, 1999). The use of the PF model clearly led to a better 

representation of the runoff dynamics for all experiments, including shallow and ripe snowpacks during spring conditions as 

well as cold and dry snowpacks representing winter conditions. The improvements were strongest for winter conditions, 15 

suggesting that under these conditions accounting for preferential flow is most relevant. This is supported by observations of 

preferential flow paths during winter conditions (Fig. 1 (a)), which were not visible after the spring experiments. During 

winter conditions just a fraction of the lysimeter area was colored with tracer, indicating preferential flow of the sprinkled 

water (Fig. 1 (b)), whereas spring conditions left the whole cross section of the lysimeter colored (Fig. 1 (c)). While a fast 

runoff response can be expected for wet and shallow snowpack and may be easier to handle for all models tested, it is the 20 

cold snowpacks that both RE and BA models did not manage to represent well: runoff from these models was more than one 

hour delayed (Ex1 and Ex2), and missed approx. 10 mm of snowpack runoff within the first hour of observed runoff. This 

can partly be explained by the fact that BA and RE need to heat up the subfreezing snowpack before they can generate 

snowpack runoff, whereas refreezing is neglected in the preferential domain of the PF model and runoff can occur even in a 

not yet isothermal snowpack. Adjusting parameters like the irreducible water content ϴr for the BA model could probably 25 

lead to earlier runoff under these conditions, but thereby lead to earlier runoff, for example for WFJ events, where TLE 

already is positive for several events. 

Despite the improved representation of the temporal runoff dynamics of the PF model (Table 1), the total event 

runoff of both RE and PF models is very similar for most conditions. Notably, the total event runoff for dry snowpacks is 

mostly overestimated by all models, suggesting underestimation of water held in the capillarities. In cold snowpacks, 30 

dendricity of snow grains may still be high, such that water retention curves developed with rounded grains underestimate 
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the suction. Additionaly, high lateral flow was observed during the experiment for those conditions (Fig. 1a). This leads to 

an effective loss of sprinkling water per surface area of the lysimeter, which of course cannot be reproduced by the models. 

Therefore, observed snowpack runoff likely underestimates the snowpack runoff that would have resulted from an equivalent 

natural ROS event and we assume that the performance of the PF and RE models to capture the event runoff is probably 

better than reported in Table 1. 5 

Interestingly, despite having the coldest snowpack, time lag for the 1
st
 natural ROS event at Davos was shorter than 

for the other 2 sites. This relationship where a cold and non-ripe snowpack led to smaller lag times was also found during 

sprinkling experiments conducted by Juras and Würzer (unpublished data). We assume that this is an indication for the 

presence of pronounced preferential flow paths under those conditions, which is also supported by the high spatial variability 

of snowpack runoff. Glass et al. (1989) state that the fraction of preferential flow per area is decreasing with increasing 10 

permeability, which itself has found to be increasing with porosity (Calonne et al., 2012). Therefore, with a decreasing 

preferential flow area due to lower densities, the cold content of a snowpack loses importance, but saturated hydraulic 

conductivity is reached faster within the preferential flow paths. The combination of those effects then is suspected to lead to 

earlier runoff. This behavior should be ideally reproduced by the PF model and indeed the onset of runoff is caught well for 

this event. 15 

The PF model led to improvements for hourly runoff rates at CDP and WFJ for a dataset comprising several years 

of runoff measurements. This is an important finding, demonstrating that the new water transport scheme aimed at a better 

representation of preferential flow during ROS events, did not negatively impact on the overall robustness of the model. To 

the contrary, the overall performance over entire seasons could even be improved. Whereas all models represent the overall 

seasonal runoff better for WFJ (Table 3), this was not found on the event scale (Fig. 7). However, the CDP simulations 20 

exhibit a larger interquartile range in R
2
 values and are therefore generally less reliable. The observed differences in model 

performance between both sites may either be caused by differences in snowpack or meteorological conditions or by issues 

with the observational data. Despite an obvious contrast in the elevation of both sites, the average conditions during ROS 

events seem to vary. Figure 6 suggests that at WFJ short and rather intense rain events dominate. The higher maximum rain 

intensities at WFJ, compared to CDP, are probably due to the later occurrence of ROS at this site (May-June), where air 25 

temperatures and therefore rain intensities are usually higher than earlier in the season (Molnar et al., 2015). Regarding mean 

intensities over the event scale, data shown in Fig. 6 further imply that short and intense ROS events typically attenuate the 

rain input (ratio runoff to rain < 1), whereas long ROS event rather lead to additional runoff from snowmelt, which is in line 

with results presented in Würzer et al. (2016). 

Snow height is generally higher at WFJ where the average initial snow height for the ROS events analyzed was 30 30 

cm higher than at CDP. Ideally, the performance of the water transport scheme in the snowpack should not be affected by the 

snow depth. At both sites, the snowpack undergoing a ROS event is mostly isothermal with a mean initial LWC of 1.9 vol% 

(CDP) and 3.3 vol% (WFJ). The initial snowpack densities at both sites were quite different. At WFJ, densities for all ROS 
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events are around 450-500 kg m
-3

, whereas for CDP densities are spread from below 200 kg m
-3

 up to 500 kg m
-3

. This 

suggests that the variable performance of all models at CDP (Fig. 7d) may be associated with early season ROS events. A 

linear regression fit suggests a positive, albeit weak correlation of snowpack bulk densities and event-R
2
 for the RE and PF 

model at CDP, but not for the BA model. For WFJ on the other hand, a clear correlation between R
2
 and HS was found for 

the BA model (R
2
 =0.44), but not for RE and PF model. This leads to the assumption that performance of RE and PF model 5 

is slightly better for higher densities, whereas the BA performance is primarily dependent on snow height. 

5 Conclusions 

A new water transport model is presented that accounts for preferential flow of liquid water within a snowpack. The 

model deploys a dual-domain approach based on solving the Richards‘ Equation for each domain separately (matrix and 

preferential flow). It has been implemented as part of the physics based snowpack model SNOWPACK which enables for 10 

the first time to account for preferential flow paths within a model framework that is used operationally for avalanche 

warning purposes and snow melt forecasting.  

The new model was tested for sprinkling experiments over a natural snowpack, dedicated measurements during 

natural ROS events, and an extensive evaluation over 101 historic ROS events recorded at 2 different alpine long-term 

research sites. This assessment led to the following main conclusions: 15 

Compared to alternative approaches, the model accounting for preferential flow (PF) demonstrated an improved 

overall and in particular more balanced performance, by showing smallest interquartile ranges for R
2
 values for a set of more 

than 100 ROS events. When evaluated over entire winter seasons, the performance statistics were superior to those of a 

single domain approach (RE), even if the differences were small. Both PF and RE models, however, outperformed the model 

using a bucket approach (BA) by a large margin (increasing median R
2 

by 0.23 and 0.39 for WFJ and 0.47 and 0.46 for 20 

CDP). In sprinkling experiments with 30-min bursts of rain at high intensity the PF model showed a substantially improved 

temporal correspondence to  the observed snowpack runoff, in direct comparison to the RE and BA models. While the 

improvements were small for experiments on isothermal wet snow, they were pronounced for experiments on cold 

snowpacks.  

Model assessments for over 100 ROS events recorded at two long-term research sites in the European Alps revealed 25 

rather variable performance measures on an event-by-event basis between the three models tested. The BA model tended to 

predict too early onset of snowpack runoff for wet snowpacks and a delayed onset of runoff for cold snowpacks, whereas RE 

was generally too late. Combined with results from a separate cross correlation analysis, results suggested the PF model to 

provide the most balanced performance concerning the timing of the predicted runoff.  

While there is certainly room for improvements of our approach to account for preferential flow of liquid water 30 

through a snowpack, this study provides a first implementation within a model framework that is used for operational 
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applications. Adding complexity to the water transport module did not negatively impact on the overall performance and 

could be done without compromising the robustness of the model results.  

Improving the capabilities of a snowmelt model to accurately predict the onset of snowpack runoff during a ROS 

event is particularly relevant in the context of flood forecasting. In mountainous watersheds with variable snowpack 

conditions, it may be decisive if snowpack runoff occurs synchronously across the entire catchment, or if the delay between 5 

onset of rain and snowpack runoff is spatially variable e.g. with elevation. In this regard, accounting for preferential flow is a 

necessary step to improve snowmelt models, as shown in this study. 
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Table 1: Snowpack pre-conditions and execution dates for the sprinkling experiments as well as R2 values for the different model 

simulations. Measured values are snow height (HS), bulk liquid water content (LWC), bulk snow temperature (TS). 

Initial snowpack conditions R2 of hourly runoff of the simulations 

Experiment HS [cm] LWC [vol%] TS [°C] DATE RE PF BA 

Serneus (Ex1) 48.5 0.1 -1.3 26-Feb-15 0.22 0.45 0.09 

Davos (Ex2) 54.5 0.4 -2.5 27-Feb-15 0.25 0.6 0.08 

Sertig (Ex3) 71.5 0 -1.6 28-Feb-15 NA NA NA 

Klosters (Ex4) 15.7 6.9 0 26-Mar-15 0.78 0.96 0.86 

Klosters (Ex5) 7 4.9 0 8-Apr-15 0.71 0.84 0.88 

Davos (Ex6) 39.3 0.9 -0.6 10-Apr-15 0.52 0.82 0.37 
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Table 2: Snowpack pre-conditions and R2 for hourly snowpack runoff for natural events Jan 03 + Jan 09 

 Site Pre-event snowpack conditions  R2 for hourly snowpack runoff 

  HS (cm) LWC (vol%) TS (°C) RE PF BA 

0
3

.0
1

.2
0

1
5

 Serneus  19 0 0 0.61 0.35 0.83 

Klosters  24 0 -0.1 0.73 0.66 0.79 

Davos  20 0 -0.4 0.28 0.30 0.13 

0
9

.0
1

.2
0

5
 Serneus  14.5 0.1 -0.2 0.94 0.56 0.79 

Klosters  18 0.1 -0.2 0.84 0.66 0.70 

Davos  19.5 0.1 -0.6 0.00 0.04 0.01 
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Table 3: R2 and mean absolute errors for hourly snowpack runoff for 17 and 14 years, for CDP and WFJ, respectively. 

 R
2 hourly snowpack runoff RMSE of snowpackrunoff 

(mm h-1) 

 BA RE PF BA RE PF 

CDP 0.33 0.50 0.52 0.57 0.45 0.41 

WFJ 0.5 0.7 0.75 0.53 0.34 0.30 
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Figure 1: (a) Horizontal cut of a snowpack after the sprinkling experiment Sertig Ex1. Lateral flow and the presence of PFP were 

observed. PFP were generated at regions with rain water ponding at ice layers and layer boundaries with a change in grain size 

(creating capillary barriers). (b) Lysimeter area after sprinkling during winter conditions: Colored areas indicate the area where 

water percolated due to preferential flow. (c) Lysimeter area after sprinkling during spring conditions: Colored area shows that 5 
water percolated uniformly, indicating dominating matrix flow.   
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Figure 2: Example of a ROS event occurring at WFJ. The entire extent of the x-axis refers to the evaluation period; the bar below 

the x-axis refers to the event length. 
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Figure 3: Cumulative rain and snowpack runoff displayed for the six sprinkling events. Ex1 (a) - Ex3 (c) were conducted during 

winter conditions, Ex4 (d) – Ex6 (f) were conducted during spring conditions. 
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Figure 4: Rain and snowpack runoff displayed as hydrographs for the six sprinkling events. Ex1 (a) - Ex3 (c) were conducted 

during winter conditions, Ex4 (d) – Ex6 (f) were conducted during spring conditions. 
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Figure 5: Natural ROS events at 3rd and 9th of January 2015 in (a) Serneus, (b) Klosters and (c) Davos 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-351, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 3 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



27 

 

 

 

Figure 6: (a) Course of mean rain (blue) and measured snowpack runoff (red) for WFJ (dotted) and CDP (solid) for all 40 and 61 

events respectively. (b) Mean air temperature for WFJ (dotted) and CDP (solid). The displayed period is extended by 5 hours 

prior to event beginning according to the event definition (0 h). 
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Figure 7: RMSE, R2 and TLE for simulations of 61 ROS events at the CDP site and of 40 ROS events at the WFJ site for all 

models (BA, RE, PF) and the reference lysimeter (RL) available only for CDP. 
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Figure 8: Best R2 values and corresponding lags using a cross-correlation function allowing a time shift (lag) of max -/+ 3 hours.  
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